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SUMMARY

Vector autoregressive (VAR) model is the most popular modeling tool in macroeconomics. This study 
considers a Bayesian framework for VAR(k) model with a structural break in the mean. The struc-
tural change problem in VAR is of theoretical and practical importance in reference to the economic 
time series data. The main motivation of the study is to identify the impact of the break in the series 
and estimate the model parameters in the presence of the break considering appropriate prior 
assumptions. A simulation study and empirical analysis of the net asset value of national pension 
schemes for different fund managers have been carried out to justify the proposed mechanism.
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1. INTRODUCTION

Vector autoregressive (VAR) time series models are the model in which current 
observation is modeled based on past observations and it is an initial point for the 
analysis of dynamic econometric problems. The proposal of the VAR approach 
was first presented at a conference on business cycle research by the Federal 
Reserve Bank of Minneapolis. These are commonly used on the dynamic data to 
study the interaction among the economic variables of interest (Sims, 1972). 
Later, Sargent and Sims (1977) showed VARs as the general form of conventional 
macro models. They proceeded to estimate the parameters of the VAR model and 
simplify the VAR in order to identify and compare the data-based model in the 
form of a particular macro model. VARs are an essential tool for empirical macro-
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economic research. The dynamic interdependency between variables representing 
the granger causality hypothesis (granger, 1969) was captured by these models 
as shown by Sims (1980). Further, VARs can be shown to approximate other mod-
els such as Vector Autoregressive Moving Average models (Lutkepohl and 
Poskitt, 1996).

The initial study of VAR with the Bayesian approach was explored by Litterman 
(1979) and more specifically VAR estimation under the Bayesian framework was 
firstly supported by Litterman (1980) to the over-fitting problem in the classical 
approach. Later on, Litterman (1986) established Bayesian VARs as benchmark 
models for economic forecasting. Doan, Litterman and Sims (1984) used the param-
eter shrinkage in order to check the accuracy of the models. giannone and Reichlin 
(2009) simultaneously with Alessi and Banbura (2009) were recommended to esti-
mate Bayesian VARs with a large cross-section rather than using shrinkage proper-
ties for VAR estimation. Alessi and Banbura (2009) concluded that the Bayesian 
approach in VAR is the global structure that will be able to yield exact forecasts. 
Bayesian VARs are successfully used in macroeconomic forecasting with a large 
number of variables.

In the present study, VARs are dealt considering with the problem of structural 
change under Bayesian inference. The problem of structural change has an extensive 
concern in time series and econometrics. There are so many studies on structural 
change problems available in the literature under the classical approach (Chow, 1960; 
Quandt 1960; Andrews, 1993; Stock, 1994; Bai and Perron, 1998). In recent years, 
many univariate statistics have been developed to test for the presence of structural 
breaks in stationary and nonstationary time series. Perron (1989) analyzed the Nel-
son-Plosser data set and found that many series are stationary around segmented 
means. Perron and Vogelsang (1992) and Perron (1997) proposed a class of test sta-
tistics for two different forms of structural break which allows the changes in both 
level and trend. Structural change in many of Plosser time series data was confirmed 
by Vogelsang (1997) and Chu and white (1992) using direct tests for shifts in trend. 
If there are breaks in the univariate series, it seems natural that the breaks should also 
appear in a multivariate system. Keeping this view in concern Ng and Vogelsang 
(2002) discussed the VAR model in the presence of a shift in mean and explored the 
consequences of unstable means for estimation, inference, and forecasting. Chib 
(1998) developed a Bayesian approach for the estimation of multiple change points 
via the Monte Carlo Markov Chain (MCMC) algorithm. He provided a comprehen-
sive study for evaluation and model selection for the autoregressive (AR) model. 
Koop and Potter (2007) considered regime-specific parameters of a Markov-switch-
ing model and assumed a Poisson hierarchical prior that allows dependence on 
regime-specific parameters. Sugita (2008) analyzed the multiple structural breaks in 
the vector autoregressive model under the Bayesian framework and examined the 
performance in detecting the number of breaks and estimating their location using the 
Bayes factor. Koop and Potter (2009) discussed the elicitation of priors in change 
point models under consideration of unknown multiple breakpoints in regression and 
time series models. Jochmann, Koop, and Strachan (2010) investigated the perfor-
mance of Bayesian forecasting of the VAR model in the account of structural breaks 
in the VAR parameters.
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Preuss, Puchstein, and Dette (2015) introduced a new nonparametric procedure 
referred to MuBreD procedure for detection and identification of the position of mul-
tiple breakpoints in the multivariate time series. MuBreD is based on a comparison of 
estimated spectral distribution on different segments of the observed time series. Bac-
chiocchi and Fanelli (2015) developed a rank condition for local identification of 
SVARs, where both the error covariance matrix and the structural parameters are 
allowed to change across volatility regimes. Cho and Fryzlewicz (2015) introduced a 
sparsified binary segmentation algorithm for the detection of multiple change-points in 
high dimensional time series. This algorithm aggregates the cumulative sum statistics 
by adding only those that pass a certain threshold. Safikhani and Shojaie (2022) con-
sidered a three-stage procedure to identify the number of breaks and their location in a 
high-dimensional piecewise vector autoregressive model. They also provided consis-
tent estimates for both structural change points and model parameters. Maheu and 
Song (2018) proposed a Bayesian approach in the multivariate vector autoregressive 
model for estimation and forecasting of multiple structural breaks. Kurita and Nielsen 
(2019) considered a partial co-integrated vector autoregressive model subject to struc-
tural breaks in linear trend and constant. The asymptotic distribution of the proposed 
likelihood-based test statistics for co-integrating rank is also introduced by them. gao, 
Yang and Yang (2020) proposed a Lasso with OLS method to estimate the number and 
location of change points in a stationary vector autoregressive model and further esti-
mate parameters of different regions.

In the present work, we have enhanced the problem of structural break through 
Bayesian inference. Throughout the paper, our focus is on the Bayesian VAR model 
considering a break in mean and derived the Posterior Odds Ratio for testing the pres-
ence of a break in the model. This type of derivation was proposed in a text by Zellner 
and Montmarquette (1971) for multiple linear models. First, the posterior odds ratio is 
derived under appropriate prior assumptions for testing the presence of structural 
breakpoint in the multiple series and estimating the model parameters using the condi-
tional posterior distribution. A simulation series is generated from the derived model 
to record the performance of Bayesian inference. For empirical analysis, we have 
applied the time series of daily Net Asset Value (NAV) and taken all three schemes 
simultaneously under both tiers. Tier I and Tier II of different fund managers for find-
ing and estimating the parameter in presence of break point.

National Pension Scheme (NPS) was started by the government of India to begin 
with a system that facilitates all citizens of India to secure their future when they are 
not in a position to work due to old age. The main concern of any retirement plan like 
a pension is to become a source of income after retirement. Pension schemes are 
designed as a tool to provide post-employment benefits on the basis of contribution 
during the employment age. Mainly pensions are designed into two groups contribu-
tory and non-contributory. NPS is a contributory scheme in which 10% of gross 
income excluding perks is contributed by employees in the pension funds and the fund 
is invested in the market. In India, the NPS fund is regulated by Pension Fund Regula-
tory Development Authority (PFRDA). PFRDA recognizes the Bank and other institu-
tions that may participate in NPS fund activities. As there are several banks and 
insurance companies which are permitted by PFRDA to become the fund managers, 
they are investing the fund as per the structure given in Figure 1.
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From the PFRDA structure, it is clear that NPS funds are managed by multiple banks 
through two mechanisms; first not allowed withdrawal before retirement named Tier-I, 
and second allowed withdrawal named Tier-II. Both funds are invested in equity mar-
ket (E), fixed return (C), and government bonds (g). Kumar, Chaturvedi, and Afifa 
(2017) analyzed data of NPS for testing the stationarity of NAV series using the unit 
root hypothesis and concluded that series are trend stationery. Kumar, Afifa, and 
Chaturvedi (2018) again tested the stationarity of NAV series through unit root testing 
for panel data time series model with time effect and found that series are trend sta-
tionary. The motive behind the choice of the NPS dataset for the problem of Structural 
Break in the VAR(k) Time Series Model is to know the presence of the break in mean 
may change the structure of the model or not and after identifying the breakpoint, the 
adequacy of the model has been checked based on NAV series of NPS.

2. VECTOR AUTOREGRESSIVE TIME SERIES MODEL WITH STRUCTURAL BREAK

Let us consider the VAR Time series model with order k contaminated by structural 
break presence at a single time point Tb as:

 
Y

A Y A Y A Y for t T

A Y A Y A Y for t T T

; 1,2, ,

; 1,...,
t

t t k t k t b

t t k t k t b

1 11 1 12 2 1

2 21 1 22 2 2





μ η

μ η
=

+ + + + + = …

+ + + + + = +

⎧
⎨
⎪⎪

⎩⎪⎪

− − −

− − −  

(1)

where N is a number of variables under study, Yt and ηt are 1xN, Ai,jis N × N .The dis-
turbances ηt are unobservable random variables with E(ηt ) = 0 and Var(ηt) = Σ an 
identity matrix and assume that the error term ηt is normally distributed with mean set 
to a vector of zeros and covariance matrix Σ as ηt ~NN(0, Σ).The coefficients Ai,j and 
variance- covariance matrices Σi, i = 1,2, are all unknown. Now, we can write the 
model (1) in matrix notation as follows:

 
Y

X for t T

X for t T T

1,2, ,

1, ,
t

t t b

t t b

1

2

θ η

θ η
=

′ + = …

′ + = + …

⎧
⎨
⎪⎪

⎩
⎪⎪

 (2)

FIgURe 1. - PFRDA structure for managing NPS fund activities
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where ( )′ = ′ ′ … ′− − −X Y Y Y1, , , ,t t t t k1 2  and θ μ( )= … ′A A A, , , ,i i i i ik1 2 .

Model (2) is a vector autoregressive of order k time series model when structural 
break presence at breakpoint Tb S-VAR(k). Model (2) may be represented considering 
no break in mean (θ1 = θ2). Then, S-VAR(k) model reduces to

 θ η= ′ + = …Y X for t T1,2, ,t t t  (3)

The purpose of this paper is to make inferences about the structural breaks in the 
vector autoregressive model under the Bayesian framework. First of all, a test 
hypothesis is proposed to examine the presence of breakpoint in the parameter and 
then parameters are estimated by derived posterior distribution. The proposed 
research problem is also verified through empirical analysis of the National Pension 
Scheme.

3. BAYESIAN INFERENCE

The main intention of any time series model is to construct a forecasting mechanism 
to predict the future trend by utilizing available information. In order to achieve the 
proposed objective, one may be initially interested to draw significant inferences 
about the structure of the model by considering some estimation, testing, and model 
selection procedures. So, the objective of the present section is to analyze the Bayes-
ian estimation and testing procedure for the derived model to handle a certain partic-
ular situation.

3.1 Prior assumptions

The selection of the prior distribution for the model parameters of the VAR model can 
sustain by an extensive range of opinions. The prior distributions which are assumed 
in the study are closely related to the distributions assumed in some of the papers 
(Kadiyala and Karlsson, 1997; Del Negro and Schorfheide, 2004; Villani, 2009; Ban-
bura, giannone and Reichlin, 2010; Koop, 2013). we consider a basic prior distribu-
tion that enables analytical derivation of the posterior distribution and, thus, fast 
computations. The natural-conjugate prior distribution is a matric-variate normal con-
ditional prior distribution of θ given Σ and an inverse wishart marginal prior distribu-
tion for Σ. Let us assume the following prior distributions for the parameters used in 
the models are as:

θ θ( )Σ ΣMN V, ,1 1

θ θ( )Σ ΣMN V, ,2 2

 ν( )Σ IW S,N
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The joint prior probability of all parameters for S-VAR model is

π θ θ
π

ν

θ θ θ θ θ θ θ θ

( )
( ) ( ) ( ) ( )

( )
( )

Σ =
Σ

Σ Γ

− ∑ − ′ − + − ′ − +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ν

ν ν

( ) ( )− + − + −

+ +

− − −

V s

tr V V S

, ,
2

2
2

exp 1
2

N Nk Nk N

N N1 2

1 1
2

1
2 2

1
1 1

1
1 1 2 2

1
2 2

 (4)

3.2 Posterior probabilities

The main motive behind the present study is to test the presence of break-in autore-
gressive coefficient with intercept term. In the Bayesian approach, hypothesis testing 
is acquired by using the posterior odds ratio (POR). POR is derived with the help of 
posterior probability under the null and alternative hypotheses. Let us assume the fol-
lowing notations to obtain the posterior probability:

= ′+ −P XX V1
1
 θ= + −P XY V2

1

θ θ= ′ + ′ +−P Y Y V S3
1

 
θ = −P PH 1

1
21

P P PH H3 11 1
 θ θ= − ′  ( )= + ′−L V X X1

1
1 1

θ= + −L X Y V2 1 1
1

1 θ θ= ′ + ′ −L Y Y V3 1 1 1
1

1

θ = −L LH 1
1

22   θ θ= − ′L L LH H3 12 2

M V X X1
1

2 2( )= + ′−
 M X Y V2 2 2

1
2θ= + −

M Y Y V3 2 2 2
1

2θ θ= ′ + ′ −
 M MbH 1

1
22

θ = −

M M MbH bH3 12 2
 θ θ= − ′

The posterior probability under H1, when model is considering no break, is given by:

 

ν

π ν

( )
( )( )

=
Γ +

Γ

ν

ν

−

−
− +

P Y H
V s T

P P
( )

2
2

2
2

N NT

NT N T1

2 2 2

2 1
1 2 2

 (5)

The posterior probability under H2, when model is considering break in mean at 
known break point Tb, is given by:
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P Y H
V s T

L M B
( )

2
2

2
2

N
T N

NT N N T2

2 2

2 1
1 2

1
1 2 2

ν

π ν

( )
( )( )

=
Γ +

Γ

ν

ν

−

−
−

−
− +

 

(6)

3.3 Posterior odds ratio

In the Bayesian testing procedure, the comparison of two different hypotheses can be 
made by using the posterior odds ratio (β01) and it is given as:

P H y

P H y
O H

P y H

P y H
p
p

P y H

P y H| 101
0

1
0

0

1

0

0

0

1
β

( ) ( )
( )

( )
( )( )

( )= = =
−

For testing the null hypothesisH :1 1 2θ θ=  i.e. model is considering no break in the 
series against the alternative hypothesis H :2 1 2θ θ≠  i.e., under the consideration of 
break in mean, expressed as below:

 

p
p

V L M B

P P
1

N N N T

N T01
0

0

2 1
1 2

1
1 2 2

1
1 2 2

β =
−

ν

ν

−
−

−
− +

−
− +

 (7)

3.4 Conditional posterior distribution

Parameter estimation  discusses the process by using sample data to estimate the 
parameters of the selected model i.e., it made inferences about unknown quantities of 
interest related to a real data set. In frequentist statistics, one uses observed data to 
construct a point estimate for each model parameter. The MLE and bias-adjusted ver-
sion of the MLE are examples of this. In Bayesian statistics parameter estimation 
involves placing a probability distribution over model parameters. In fact, there is no 
conceptual difference between parameter estimation (inferences about θ) and density 
estimation (inferences about future y) in Bayesian statistics. Bayes estimator of para-
metric function is calculated by conditional posterior probability. The likelihood func-
tion of the model with Θ = {θ1, θ2, Σ}is:

L Y

tr Y X Y X Y X Y X

( ) 1

2

exp 1
2

NT T
2 2

1
1 1 1 1 1 1 2 2 2 2 2 2

π

θ θ θ θ( ) ( ) ( ) ( )

( )
Θ =

Σ

− ∑ − ′ ′ − ′ + − ′ ′ − ′⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

Operating the likelihood function with joint prior distribution (6), we have derived 
conditional posterior distribution and get the marginal distribution of every parameter 
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which may depend on other parameters. For computing the conditional posterior dis-
tribution for θ1, θ2 and Σ,we get the expression as:

y tr B B B, , exp 1
21 2

1
1 3 1 1 3θ θ θ θ{ }( ) ( ) ( )Π Σ ∝ − ∑ − ′ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

y tr F F F, , exp 1
22 1

1
1 3 1 1 3θ θ θ θ{ }( ) ( ) ( )Π Σ ∝ − ∑ − ′ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

y tr G, , 1 exp 1
2Nk T N1 2 2 1 ( 1)

2

1θ θ { }( ) ( )Π Σ ∝
Σ

− ∑⎡
⎣⎢

⎤
⎦⎥ν( )+ + + + +

−

where

B X X V1 1 1
1= ′ + −
; B X Y V2 1 1

1
1θ= + −
; B B B1

1
2 3=−

F X X V1 2 2
1= ′ + −
; F X Y V2 2 2

1
2θ= + −
; F F F1

1
2 3=−

G Y X Y X Y X Y X S

V

1 1 1 1 1 1 2 2 2 2 2 2

1
1 1 1 1 2 2 2 2

θ θ θ θ

θ θ θ θ θ θ θ θ{ }
( ) ( ) ( )

( )( ) ( ) ( )

( )= − ′ ′ − ′ + − ′ − ′ +

+ − − + − ′ −−

we can easily see that the marginal distribution of θ1, θ2 , and Σ has closed-form solu-
tion and conditional posterior distribution of θ1 and θ2 has matric-variate normal distri-
bution and Σ has an inverse wishart distribution.

4. SIMULATION STUDY

The importance of statistics is to draw a significant inference for a given model using 
adequate statistical techniques. Simulation is a flexible methodology to analyze the 
behavior of a proposed study and compares the best estimate. Here, we have studied 
the behavior of the VAR model in presence of structural break on the basis of the sim-
ulated samples with varying sample sizes and different combinations of the VAR coef-
ficient. For this purpose, we have simulated the series of different sizes T= (80, 100, 
120) with different positions of breakpoint (T/4, T/2, 3T/4). The initial value of the 
response series is Y =(10, 20) considering the number of variables N=2. The true 
value of the VAR coefficient is described as

2 3

0.15 0.3

0.1 0.2

;

5 7

0.2 0.1

0.2 0.15

; 1 0.5
0.5 21 2θ θ=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Σ =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

First, we obtained the estimators of parameters of the proposed model for each gen-
erated sample, then reported the absolute bias and the corresponding mean square 
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errors of Bayes estimators of the model parameters. All results are based on 5000 
replications. For the different sizes of the series with varying break locations, aver-
age estimates (AE), absolute bias (AB), and mean square error (MSE) of the estima-
tors of the parameters have been summarized in Tables 1-3.

From Tables 1-3, it is concluded that average estimates are near to the actual value 
of the parameter that can be observed using MSE and AB. As the size of the series 
increases location of the breakpoint is changed from near to the bottom of the series, 
and MSE and AB for θ1 are decreased. And we got reversed results for parameter θ2 
i.e., MSE and AB are increased as the change in location of the break point from near 
to bottom of the series while similar results are obtained as the size of the series is 
increased. From the tables shown above, it is also interpreted that change in location 
parameter does not provide any pattern for parameters of variance-covariance matrix 
because proposed model considers only break in mean. After estimating the parame-
ters of the proposed model, testing has been done for the change in mean. Table 4 
provides the POR value for different sizes of series with varying breakpoints and dif-
ferent combinations of mean parameters. Table 4 shows that the POR value is less than 
one for each location of breakpoint and series size, i.e., reject the null hypothesis and 

Table 1. - AE, MSE and AB of the estimator θ1 with varying T and TB

T TB  θ1 2 3 0.15 0.30 0.10 0.20

80

T/4
AE 2.1054 3.1377 0.0846 0.2746 0.1104 0.1943

MSE 0.2421 0.5247 0.1369 0.5263 0.1795 0.1285
AB 0.3916 0.5684 0.2941 0.5788 0.3088 0.2793

T/2
AE 2.0619 3.0750 0.1230 0.3131 0.1031 0.1837

MSE 0.1322 0.2956 0.0627 0.2520 0.0716 0.0575
AB 0.2846 0.4316 0.1990 0.3912 0.2006 0.1896

3T/4
AE 2.0377 3.0605 0.1308 0.2848 0.1055 0.1915

MSE 0.0887 0.1920 0.0368 0.1556 0.0417 0.0371
AB 0.2350 0.3435 0.1531 0.3100 0.1582 0.1516

100

T/4
AE 2.1120 3.1374 0.0987 0.2586 0.1155 0.1952

MSE 0.1914 0.4261 0.1038 0.3836 0.0994 0.0901
AB 0.3408 0.5115 0.2548 0.4881 0.2417 0.2331

T/2
AE 2.0705 3.0964 0.1197 0.2745 0.1035 0.1959

MSE 0.1046 0.2353 0.0475 0.1811 0.0496 0.0433
AB 0.2551 0.3810 0.1760 0.3330 0.1715 0.1654

3T/4
AE 2.0425 3.0745 0.1458 0.3034 0.0938 0.1822

MSE 0.0809 0.1711 0.0271 0.1133 0.0300 0.0291
AB 0.2248 0.3285 0.1286 0.2651 0.1335 0.1368

120

T/4
AE 2.0631 3.0955 0.1019 0.2673 0.1146 0.2006

MSE 0.1673 0.3814 0.0845 0.3256 0.0862 0.0675
AB 0.3226 0.4874 0.2321 0.4550 0.2290 0.2028

T/2
AE 2.0624 3.0657 0.1269 0.2755 0.1126 0.1923

MSE 0.0929 0.1918 0.0379 0.1504 0.0418 0.0345
AB 0.2408 0.3495 0.1543 0.3043 0.1598 0.1465

3T/4
AE 2.0442 3.0637 0.1403 0.3021 0.0997 0.1891

MSE 0.0653 0.1404 0.0243 0.0919 0.0214 0.0236
AB 0.1968 0.2939 0.1237 0.2400 0.1133 0.1217
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conclude that series contains a break in the mean term. Thus, the simulation study 
correctly generates the sample series from the proposed model.

5. EMPIRICAL ANALYSIS

we studied the NPS funds for estimation and tested the presence of structural 
breakpoint in the series of schemes under both tiers of different fund managers 
using the Vector Autoregressive time series Model. For analysis purpose, we have 
taken three banks namely ICICI, SBI, and Kotak Mahindra and time series 
recorded daily basis of NAV data for the period February 01, 2010 to December 
31, 2017. For appropriate interpretation of the data, we converted the daily series 
of the individual bank into a monthly average and tested the presence of break-
point using the derived theorem. Breaks present in the data can distort statistical 
inference of the model parameters and may lead to the wrong inference. Thus, it is 
necessary to account for or deal with possible breaks in the data set before making 

Table 2. - AE, MSE and AB of the estimator θ2 with varying T and TB

T TB θ2  5 7 0.20 0.10 0.20 0.15

80

T/4
AE 5.1881 7.2835 0.1738 0.0857 0.2047 0.1365

MSE 0.5618 1.1313 0.0246 0.5761 0.0367 0.0473
AB 0.5836 0.8432 0.1266 0.5650 0.1486 0.1751

T/2
AE 5.2181 7.3428 0.1714 0.0632 0.2014 0.1314

MSE 0.7318 1.5350 0.0331 0.6548 0.0481 0.0630
AB 0.6719 0.9877 0.1430 0.5868 0.1680 0.1975

3T/4
AE 5.2582 7.4480 0.1709 0.0983 0.2081 0.0914

MSE 1.1440 2.4056 0.0595 1.3145 0.0836 0.1368
AB 0.8444 1.2119 0.1896 0.7594 0.2199 0.2971

100

T/4
AE 5.1108 7.1605 0.1844 0.1109 0.1975 0.1422

MSE 0.4093 0.8663 0.0190 0.4473 0.0295 0.0358
AB 0.5090 0.7283 0.1105 0.4837 0.1294 0.1511

T/2
AE 5.2145 7.3064 0.1625 0.0589 0.2080 0.1526

MSE 0.6814 1.4265 0.0267 0.5282 0.0380 0.0490
AB 0.6464 0.9483 0.1303 0.5318 0.1561 0.1761

3T/4
AE 5.3692 7.5722 0.1522 0.0829 0.2034 0.1314

MSE 1.0943 2.4486 0.0534 0.7933 0.0689 0.0956
AB 0.8316 1.2372 0.1823 0.6632 0.2055 0.2484

120

T/4
AE 5.1053 7.1505 0.1832 0.0390 0.2131 0.1478

MSE 0.3856 0.8520 0.0176 0.2898 0.0195 0.0289
AB 0.4872 0.7308 0.1068 0.4006 0.1092 0.1362

T/2
AE 5.1825 7.2857 0.1718 0.0609 0.2056 0.1381

MSE 0.5565 1.1384 0.0250 0.4256 0.0307 0.0444
AB 0.5908 0.8248 0.1264 0.4880 0.1374 0.1691

3T/4
AE 5.2611 7.3540 0.1655 0.0884 0.2049 0.1133

MSE 0.9767 2.0043 0.0445 0.6191 0.0488 0.0790
AB 0.7716 1.1141 0.1671 0.5907 0.1751 0.2220

02txt_Afifa.indd   15002txt_Afifa.indd   150 22/07/22   09:3822/07/22   09:38



ANALYSIS OF STRUCTURAL BREAK IN VAR(K) TIME SERIES MODEL: A BAYESIAN APPROACH 151

Table 3. - AE, MSE and AB of the estimator Σ with varying T and TB

T TB Σ 1 0.5 0.5 3

80

T/4
AE 0.8807 0.3701 0.3701 2.8119

MSE 0.1573 0.0709 0.0709 1.1891
AB 0.2978 0.2169 0.2169 0.9399

T/2
AE 0.8637 0.3735 0.3735 2.7437

MSE 0.1421 0.0741 0.0741 1.1470
AB 0.2836 0.2245 0.2245 0.9490

3T/4
AE 0.8359 0.3778 0.3778 2.6006

MSE 0.2341 0.0665 0.0665 1.1835
AB 0.2990 0.2106 0.2106 0.9510

100

T/4
AE 0.8628 0.3557 0.3557 2.8374

MSE 0.1432 0.0749 0.0749 1.1511
AB 0.2821 0.2128 0.2128 0.9296

T/2
AE 0.8144 0.3979 0.3979 2.7112

MSE 0.1640 0.0591 0.0591 1.1213
AB 0.2825 0.1942 0.1942 0.9013

3T/4
AE 0.7837 0.3848 0.3848 2.6003

MSE 0.1510 0.0593 0.0593 1.1902
AB 0.2867 0.1993 0.1993 0.9440

120

T/4
AE 0.7763 0.3750 0.3750 2.6018

MSE 0.0938 0.0613 0.0613 1.1830
AB 0.2741 0.2008 0.2008 0.9265

T/2
AE 0.7693 0.3805 0.3805 2.6497

MSE 0.1240 0.0586 0.0586 1.1390
AB 0.2767 0.1938 0.1938 0.9283

3T/4
AE 0.7394 0.3829 0.3829 2.5021

MSE 0.1162 0.0529 0.0529 1.1079
AB 0.2756 0.1818 0.1818 0.9051

Table 4. - Posterior odds ratio with varying T and TB

θ1 (2,3) (3,5) (5,7)

θ2 (5,7) (3,5) (2,3)

T TB POR POR POR

80 T/4 1.33E-23 3.82E-19 8.53E-21
T/2 1.81E-27 1.39E-21 3.40E-25
3T/4 3.39E-32 8.53E-29 8.87E-30

100 T/4 1.87E-23 4.71E-21 2.48E-26
T/2 1.32E-30 5.10E-24 7.02E-28
3T/4 4.99E-39 4.95E-30 2.50E-34

120 T/4 4.61E-25 1.69E-22 1.84E-26
T/2 6.47E-31 5.82E-28 6.53E-33
3T/4 1.68E-41 1.07E-32 1.29E-38

any inference for analysis. The present section tested the presence of structural 
breaks and how it affects the parameters of the model under the Bayesian frame-
work through the real data of NPS.
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For estimation and testing purposes, firstly structural break is identified in the 
NAV series of NPS through a classical approach using the R package “strucchange” 
under the command “breakpoints” (Zeileis, Leisch, Hornik, Kleiber, 2002) . It is 
detected the breakpoint for individual series of schemes E, C, and g under both tiers 
of different banks. we have considered the intersection point of individual schemes of 
E, C and g for both tiers including different banks under study as a breakpoint for our 
analysis. The date-wise time periods recorded in the scheme of banks for both tiers are 
listed in Table 5. The logical reason for these sudden break points occurred in due to 
local or individual economic crisis, interest, and benefit within the schemes under dif-
ferent banks. These structural changes vary from scheme to scheme due to individual 
factors affecting domestically on these fund managers. Therefore, we have tested our 
model considering the given breakpoint listed in Table 5. The model has been explored 
by fitting the NAV series of NPS and testing the presence of the break in mean hypoth-
esis under the Bayesian framework using the derived POR. The calculated POR for 
banks under study are recorded in Table 5.

Table 5 shows that if the break is present in the mean only, the posterior odds ratio 
value is too small to reject the null hypothesis i.e., no break is present in the mean. The 
presence of break in means to influence the time series data and maybe change the struc-
ture of the model. For the data used in the present study, we also say that all series are 
shifted by level component and this is due to market pension policy. The estimated param-
eter in the frequentist framework is sometimes unreliable due to the presence of abnormal 
observations. To overcome this problem, it is necessary to get a better decision about 
unknown parameters in the presence of a structural break. To justify our theoretical results 
of estimation, we have estimated the parameters with the help of frequentist estimation 
and compared the estimators from the Bayesian approach with the classical approach. 
After identifying the breakpoint which is listed in Table 5, the adequacy of the model has 
been checked based on the NAV series of NPS. Bayesian estimates of the real data set for 
the VAR(k) model which considers a break in mean are summarized in Table 6.

6. CONCLUSIONS

In the present paper, the posterior odds ratio is derived for identifying the presence of 
the break in vector autoregressive time series model considering the break in mean. 
The Bayesian estimator is provided to estimate the model parameters in consideration 
of the break in mean. For theoretical justification, simulation and empirical studies are 
conducted and got the model is more efficient when the series is having a break in 
mean. This work may be extended for the case of break-in both mean and variance-co-
variance matrix and panel-VAR model.

Table 5. - Possible date-wise break points and POR in the set schemes E, C and G 
under both tier

Banks Tier Breakmonth Break-point POR

SBI (May,2009 to Dec,2016) II April, 2012 36 2.35E-27
ICICI (May,2009 to Dec,2016) I May,2010 13 6.20E-15
KM (Dec,2009 to Dec,2016) I April, 2012 36 8.31E-34
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APPENDIX

A1. POSTERIOR PROBABILITY UNDER H1

Under this hypothesis, model containing no break in mean and variance and likelihood 
function is given by:
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Combining the likelihood function with the prior distributions, the posterior probabil-
ity is:
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A2. POSTERIOR PROBABILITY UNDER H2

Under this hypothesis, the likelihood function containing break in mean is given by:
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Combining the likelihood function with the prior distributions, the posterior probabil-
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Using the notation given in Section 3.2, we can write the above equation as follows:
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Using the notation given in Section 3.2, write the equation as:
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