Assessing Quality Using Routine Administrative Data: the Case of Preventable Hospitalizations
digital
![]() Article
|
Ebook format Pdf readable on these devices:
|
|
A vast literature has recently concerned the measurement of quality dimensions such as access, effectiveness, performance and outcome of health services supplied by national health care providers. The main concern is to achieve a classification of administrative areas with respect to observed quality indicators. We describe a simple and effective procedure to achieve this goal which allows powerful testing of the hypothesized cluster structure. We describe the performance of this method on a dataset on preventable hospitalizations (PPH) in Italy during 1998, in order to highlight clusters of regions with homogeneous relative risk.
Keywords: Unknown risk factors, Nonparametric ML, Spatial association, Statistical Mapping. Authors biographyMarco Alfò, Dipartimento di Statistica, Probabilità e Statistiche Applicate – Università degli Studi di Roma “La Sapienza” – Piazzale A. Moro, 5, 00185 ROMA (e-mail: marco.alfo@uniroma1.it).Luciano Nieddu, Dipartimento di Statistica, Probabilità e Statistiche Applicate – Università degli Studi di Roma “La Sapienza” – Piazzale A. Moro, 5, 00185 ROMA (e-mail: donatella.vicari@uniroma1.it). Donatella Vicari, Facoltà di Economia. – Libera Università “S. Pio V”. – via Delle Sette Chiese, 139, 00145 ROMA (e-mail: l.nieddu@luspio.it). |
Browse the archive
Online First Articles
Recent issues
STATISTICA & APPLICAZIONI - 2022 - 2
STATISTICA & APPLICAZIONI - 2022 - 1
STATISTICA & APPLICAZIONI - 2021 - 2
STATISTICA & APPLICAZIONI - 2022 - 1
STATISTICA & APPLICAZIONI - 2021 - 2